CBD FULL Ginseng

1% 100gr CBD FULL Cannabis, Ginseng, Honig

1% 50gr CBD FULL Cannabis, Ginseng, Honig

Lieferzeit
Versandfertig in 2-3 Tagen
ZUTATEN: Honig (mel), Hanf (Cannabis sativa L), Ginseng. Hergestellt in handarbeit nach antike Rezeptur mit vollem Spektrum an Inhaltsstoffen.
22,00 €
Inkl. 10% MwSt.
Auf Lager
Nur noch 98 verfügbar
SKU
CBD FULL-1-50-h-h-g

1% 50gr CBD FULL

Hanf extrakt (nach Paracelsus), Ginseng, Honig.

ANWENDUNG:
2-3 x tgl. 1 Erbsengröße (1g) im Mund zergehen lassen und 0,2 l Wasser nach trinken. Dauer nach Bedarf. Die angegebene empfohlene Tagesdosis soll nicht überschritten werden. Ein Nahrungsergänzungsmittel ist kein Ersatz für eine abwechslungsreiche Ernährung. Von Kindern fernhalten. Bei Zimmertemperatur dunkel lagern.

Weitere Informationen
Hersteller Organic Gardens GmbH
Schreiben Sie eine Bewertung
Sie bewerten:1% 50gr CBD FULL Cannabis, Ginseng, Honig

Hanf (Cannabis sativa L.)

Arzneipflanze des Jahres 2018

Das Endocannabinoidsystem

ist ein wichtiger Teil des zentralen und peripheren Nervensystems zuständig für Signalübertragung zwischen Hirn, Rückenmark, Vegetatives Nervensystem und Organen sowie Regulator der  optimalen physiologischer und kognitiver Prozesse wie: Immunsystem,[1] vegetative nervous system,[2] soziales Verhalten und Angst[3] Bewegung, Gedächtnis, Lernprozesse[4] kontrolle über das Neubildung  Überleben oder Tod von neuronalen und nicht-neuronalen Zellen[5] Appetit[6] Schmerz Entzündungen[7] Fett- Energiestoffwechsel[8], und vieles mehr.
Veränderung in Endocannabinoidsystem oder Cannabinoid Mangel führen zu schlecht funktionierenden Immunsystems und einer Vielzahl von Krankheitszuständen.

Hanf in Antike Heilkunst

Die Geschichte der Verwendung von Hanf ist seit mehr als 4.800 jahre für breite spektrum von krankheiten dokumentiert.

Chinesen verwendeten ihn für Betäubung während chirurgischer Eingriffe, Malaria, Rheuma, Darmverstopfung, weiblichen Fortpflanzungssystems Störungen, als Abführmittel,[9]

In India war eingesetzt als Analgetikum (Zahnschmerzen, Kopfschmerzen, und Neuralgie), bei Krämpfen (Tetanus, Tollwut, Kolik, Durchfall und Epilepsie), zum  Beruhigung (Manie, Hysterie und Angst), Schmerzlinderung Bei entzündlichen Erkrankungen wie z.b. Rheuma, als Antibiotikum, bei Asthma, Bronchitis und viele andere[10] [11] [12].

Ägypter heilten mit Hanf Glaukom [13], gynäkologischen Erkrankungen, schmerz[14], Fieber, Geburtshilfe[15], Parasiten[16] Tumoren, Wunden, Schwellungen, Abszessen Fieber[17] Augen, Krebs und Anorektale Krankheiten[18]

Im Westen hat Hanf erst im 19 Jahrhundert ein Boom als Arznei gelöst.
Hunderte von wissenschaftliche Artikel über Heilkraft von Hanf würden veröffentlicht.[19] Es würde eine breite Spektrum von Krankheiten behandelt. Bis 1930 sind mehr als 2000 Medikamente auf Hanfbasis geboten[20] Zahlreiche Medizinische Anwendungen von Hanf waren zusammengefasst in “Sajous's Analytic Cyclopedia of Practical Medicine (1924)”[21]
Nach globales verbot in “Genfer Opiumkonferenz 1925” und Dämonisierung Kampagne Cannabis ist als Arznei verschwunden.

Die Wiederentdeckung

Unter öffentlichem Druck aufgrund die Krankheiten, für dies die Schulmedizin ratlos ist haben Wissenschaftler in 70 igem Jahren das therapeutische wert von Cannabis unter die Lupe genommen. Mittlerweile sind über 100.000 Studien und Fachartikel über Cannabis und Cannabinoide veröffentlicht. In Deutschland ist Behandlung mit Medikamente auf Cannabis Basis für über 60 Krankheiten rezeptpflichtig erlaubt.[22]
Laut Studien Cannabinoide könnten aufgrund ihres natürlichen Ursprungs und ihres geringen Nebenwirkungsprofils und Schutzfunktion von pathologischen Zustände eine sichere, kostengünstige Therapie für breite Palette von Krankheitszuständen darstellen.

Cannabinoiden und Schmerz

Einnahme von Cannabinoiden beseitigt Endocannabinoid-Mangel als hauptursache für Migräne, Fibromyalgie[23], Reizdarmsyndrom[24] und anderen behandlungsresistenten kronische Schmerzen.[25]  Cannabinoide beeinflussen Nucleus ventro caudalis einem Teil des Zwischenhirns die für Schmerzsinn zuständig ist und sind bei verringerung des schmerzempfinden 10 Mal wirksamer als Morphin.[26] Das Endocannabinoidsystem beeinflusst Schmerzkontrolle und vermittelt zentrale stressinduzierte Analgesie (Schmerzunempfindlichkeit)[27] Cannabinoid Agonisten unterdrücken Chronische und neuropathische Schmerzen durch Aktivierung  CB 1 - und CB 2 -Rezeptoren im Rückenmark[28]. Cannabinoide reduzieren Hyperalgesie (gesteigerte Empfinden Schmerzreizes) durch Hemmung des Calcitonin-Gen-verwandten Peptids[29]. Cannabinoide hemmen Glutamatfreisetzung und verringern neuropathischer Schmerzen und sekundären sowie tertiären Hyperalgesie (gesteigerte Empfinden Schmerzreizes) bei Migräne und Fibromyalgie[30]. Cannabinoide stimulieren produktion von Beta-Endorphin ein körpereigenes Morphin mit analgetischer Wirkung[31]. Cannabinoide haben zwanzigfache entzündungshemmende Wirksamkeit von Aspirin und die doppelte Wirkung von Hydrocortison[32]. Cannabinoid-2-Rezeptor-Agonist mildert durch Knochenkrebs verursachte Schmerzen und Knochenschwund[33] [34]. Cannabinoiden mildern durch Krebs verursachte Schmerzüberempfindlichkeit und entzündlichen Muskelschmerzen[35]

Cannabinoiden und Krebs

Wichtigste Eigenschaft den Cannabinoiden bei der Krebsbehandlung ist Fähigkeit Tumorzellen gezielt abzutöten.[36] Studien legen nahe dass Cannabinoide wirken gegen: Lungenkarzinom[37], Hirntumoren[38] [39] [40] [41], Brustkrebs[42] [43] [44] , Bauchspeicheldrüsenkrebs[45] [46] [47], Lymphom [48] [49] [50], Schilddrüsenkrebs [51] [52], Hautkarzinom [53] [54], Uteruskarzinom [55], Prostatakarzinom [56] [57] [58], Dickdarmkrebs [59] [60] [61] und Knochenkrebs [62] [63]. Cannabinoide haben ähnliche oder bessere Wirksamkeit bei der Milderung durch Chemotherapie verursachter Übelkeit und Erbrechen als zugelassene Antiemetika Medikamenten.[64]

Cannabinoiden bei Verletzungen und chronische neurodegenerative Krankheiten

Cannabinoide sind wegen Reduzierung klassischer neurotoxischer Ereignisse, Entfernung pathologischer Ablagerungen durch verbesserte neurologische Leistung, verringerte Ödeme, Infarktgröße, Gliosen, Entzündungen,  Blut-Hirn-Schranke-Störungen, vielversprechend bei behandlung von Hirnverletzung [65], Schlaganfälle [66] [67] [68] und chronische neurodegenerative krankheiten wie: Alzheimer [69] [70] [71] [72],  Parkinson [73] [74], Amyotrophe Lateralsklerose [75] [76] [77] Multiplen Sklerose [78]

Cannabinoiden bei Psychose, Depression und Angst

Cannabinoiden schwächen: akuten Stress [79] [80], Panikattacken und phobische Ängste [81], depressionen [82] [83] [84], mit Stress verursachten schaden auf Hippocampus [85], Psychosen [86] Schizophrenie [87] [88]

Neuroprotektiven und neuro regenerativen eigenschaften von Cannabinoiden

Cannabinoiden fordern Neuroplastizität (Fähigkeit des Gehirns, auf Erfahrungen als Reaktion sich zu verändern und anpassen) [89], Reparatur, Nach Wachstum [90] [91] und behüten Nervenzellen vor dem Absterben [92] [93]. Auf diese Weise bilden sie schutz vor neurodegenerativer Erkrankungen wie posttraumatische Belastungsstörungen (PTBS), Stimmungsstörungen, Alzheimer, Huntington, Parkinson, und Schizophrenie [94].

Cannabinoiden und Epilepsie

Patienten mit arzneimitteln resistenter Epilepsie haben weniger Anfälle [95], Degeneration und den Neuronenverlust im Hippocampus [96] insbesondere bei Lennox-Gastaut und Dravet-Syndrom [97] [98] [99] [100] Patienten haben Wenige oder keine Anfälle, bessere Stimmung, Kommunikation, Motorik, Sprache, Verhalten, Wachsamkeit  und  Schlaf      [101] [102] Hanfextrakte mit grosse CBD und geringe THC anteil haben bessere Antiepileptische wirkung als zugelassene arznei wie Diphenylhydantoin und  Mysolin [103]

Cannabinoiden Hemmen Opiatabhängigkeit und Entzugserscheinungen

Cannabidiol hemmt Betäubungsmitteln sucht, Entzugserscheinungen, Heroinsucht [104] [105] [106] Kokainsucht [107] Morphiumsucht [108] [109] [110] und Tabbaksucht [111]

Quellen:

[1] Pandey R., Mousawy K., Nagarkatti M., Nagarkatti P. (August 2009). "Endocannabinoids and immune regulation" . Pharmacological Research. 60 (2): 85–92. doi : 10.1016 / j.phrs.2009.03.019
[Science Direct]

[2] Elphick MR, Egertová M (March 2001). "The neurobiology and evolution of cannabinoid signalling". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences. 356 (1407):
[Pub Med]

[3] Häring M, Kaiser N, Monory K, Lutz B (2011). Burgess HA (ed.). "Circuit specific functions of cannabinoid CB1 receptor in the balance of investigatory drive and exploration". PLOS ONE. 6 (11): e26617. Bibcode:2011PLoSO...626617H. doi:10.1371/journal.pone.0026617.
[PMC]

[4] Goodman J, Packard MG. The influence of cannabinoids on learning and memory processes of the dorsal striatum. Neurobiol Learn Mem. 2015;125:1-14. doi:10.1016/j.nlm.2015.06.008
[Pub Med]

[5]Cannabinoids and cell fate Manuel Guzmán CristinaSánchez Ismae Galve-Roperh Pharmacology & Therapeutics Volume 95, Issue 2, August 2002, Pages 175-184
[Science Direct]

[6] Jesudason D, Wittert G. Endocannabinoid system in food intake and metabolic regulation. Curr Opin Lipidol 2008;19:344–348.
[Pub Med]

[7]Burstein SH, Zurier RB. Cannabinoids, endocannabinoids, and related analogs in inflammation. AAPS J 2009;11:109–119.
[Pub Med]

[8] Ruminska A, Dobrzyn A. [The endocannabinoid system and its role in regulation of metabolism in peripheral tissues] Postepy Biochem. 2012;58(2):127–134.
[Pub Med]

[9] Merlin MD. Archaeological evidence for the tradition of psychoactive plant use in the old world. Econ Bot 2003;57:295-323
[University of Hawai‘i at Manoa]

[10] Touwn M. The religious and medicinal uses of Cannabis in China, India and Tibet. J Psychoactive Drugs. 1981;13(1):23-34.
[Taylor & Francis Group]

[11] Mikuriya TH. Marijuana in medicine: past, present and future. Calif Med. 1969;110(1):34-40.
[PMC free article]

[12] Ethan Budd Russo CReDO Science Cannabis in India: Ancient lore and modern medicine
[ResearchGate free article]

[13] “Papyrus Ramesseum III”.
[Science in Ancient Egypt]

[14] “Papyrus Ebers”
[medizinische-papyri]

[15] “Berliner Papyrus”
[medizinische-papyri]

[16] “Papyrus Hearst”
[medizinische-papyri]

[17] Medical Book from Crocodilopolis  P. Vindob. D. 6257
[Brigham Young University]

[18] Papyrus Chester Beatty IV
[British Museum]

[19] Grinspoon L. Marihuana reconsidered. Cambridge, MA: Harvard University Press; 1971.

[20][The Antique Cannabis Book]

[21] "Sajous's analytic cyclopedia of practical medicine" Charles E de M Sajous; Louis T de M Sajous Philadelphia, F.A. Davis Company, 1924

[22] Der Stand der medizinischen Versorgung mit Cannabis und Cannabinoiden in Deutschland Dr. Franjo Grotenhermen “akzept e.V. Bundesverband für akzeptierende Drogenarbeit und humane Drogenpolitik” D-12161 Berlin
[akzept]

[23] Delta-9-THC based monotherapy in fibromyalgia patients on experimentally induced pain, axon reflex flare, and pain relief Schley M., Legler A., ??Skopp G., Schmelz M., Konrad C., Rukwied R. Curr Med Res Opin. 2006 Jul; 22 (7): 1269 & ndash; 76.
[PubMed]

[24] Review Endocannabinoids and the gastrointestinal tract. Massa F, Monory K J Endocrinol Invest. 2006; 29(3 Suppl):47-57.
[PubMed]

[25] Russo EB. Clinical endocannabinoid deficiency (CECD): can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol Lett. 2004 Feb-Apr;25(1-2):31-9. PMID: 15159679.
[Pub Med]

[26] Suppression of noxious stimulus-evoked activity in the ventral posterolateral nucleus of the thalamus by a cannabinoid agonist: correlation between electrophysiological and antinociceptive effects. Martin WJ, Hohmann AG, Walker JM J Neurosci. 1996 Oct 15; 16(20):6601-11.
[Pub Med]

[27] An endocannabinoid mechanism for stress-induced analgesia. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, Krey JF, Walker JM, Holmes PV, Crystal JD, Duranti A, Tontini A, Mor M, Tarzia G, Piomelli D Nature. 2005 Jun 23; 435(7045):1108-12.
[Pub Med]

[28] Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats. Rahn EJ, Makriyannis A, Hohmann AG Br J Pharmacol. 2007 Nov; 152(5):765-77.
[Pub Med]

[29] Antihyperalgesic effects of spinal cannabinoids. Richardson JD, Aanonsen L, Hargreaves KM Eur J Pharmacol. 1998 Mar 19; 345(2):145-53.
[Pub Med]

[30] Cannabinoid receptor agonists inhibit glutamatergic synaptic transmission in rat hippocampal cultures. Shen M, Piser TM, Seybold VS, Thayer SA J Neurosci. 1996 Jul 15; 16(14):4322-34.
[PubMed]

[31] Chronic administration of cannabinoids regulates proenkephalin mRNA levels in selected regions of the rat brain. Manzanares J, Corchero J, Romero J, Fernandez-Ruiz JJ, Ramos JA, Fuentes JA Brain Res Mol Brain Res. 1998 Mar 30; 55(1):126-32.
[Pub Med]

[32] Review Cannabinoids: the separation of central from peripheral effects on a structural basis. Evans FJ Planta Med. 1991 Oct; 57(7):S60-7.
[Pub Med]

[33] Jia Sun, Ya-Qun Zhou, Shu-Ping Chen, Xiao-mei Wang, Bing-Yang Xu, Dan-Yang Li, Yu-Ke Tian, Da-Wei Ye, The endocannabinoid system: Novel targets for treating cancer induced bone pain, Biomedicine & Pharmacotherapy, Volume 120, 2019, 109504,
[Science Direct]

[34] AN Lozano-Ondoua , C. Wright , A. Vardanyan , T. King , TM Largent-Milnes , M. Nelson , JM Jimenez-Andrade , PW Mantyh , TW Vanderah A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss Life Sci. , 86 ( 17-18 ) ( 2010 ) , S.. 646 - 653
[Science Direct]

[35] Lois J Kehl, Darryl T Hamamoto, Paul W Wacnik, Devin L Croft, Blake D Norsted, George L Wilcox, Donald A Simone, A cannabinoid agonist differentially attenuates deep tissue hyperalgesia in animal models of cancer and inflammatory muscle pain
[Science Direct]

[36] Chakravarti B, Ravi J, Ganju RK. Cannabinoids as therapeutic agents in cancer: current status and future implications. Oncotarget. 2014;5(15):5852-5872. doi:10.18632/oncotarget.2233
[PMC]

[37] Ravi J, Sneh A, Shilo K, Nasser MW, Ganju RK. FAAH inhibition enhances anandamide mediated anti-tumorigenic effects in non-small cell lung cancer by downregulating the EGF/EGFR pathway. Oncotarget. 2014;5(9):2475–2486.
[PMC]

[38] Blazquez C, Casanova ML, Planas A, Gomez Del Pulgar T, Villanueva C, Fernandez-Acenero MJ, Aragones J, Huffman JW, Jorcano JL, Guzman M. Inhibition of tumor angiogenesis by cannabinoids. Faseb J. 2003;17(3):529–531.
[Pub Med]

[39] Carracedo A, Lorente M, Egia A, Blazquez C, Garcia S, Giroux V, Malicet C, Villuendas R, Gironella M, Gonzalez-Feria L, Piris MA, Iovanna JL, Guzman M, Velasco G. The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell. 2006;9(4):301–312.
[Pub Med]

[40] Blazquez C, Salazar M, Carracedo A, Lorente M, Egia A, Gonzalez-Feria L, Haro A, Velasco G, Guzman M. Cannabinoids inhibit glioma cell invasion by down-regulating matrix metalloproteinase-2 expression. Cancer Res. 2008;68(6):1945–1952.
[Pub Med]

[41] Nabissi M, Morelli MB, Santoni M, Santoni G. Triggering of the TRPV2 channel by cannabidiol sensitizes glioblastoma cells to cytotoxic chemotherapeutic agents. Carcinogenesis. 2013;34(1):48–57.
[Pub Med]

[42] Nasser MW, Qamri Z, Deol YS, Smith D, Shilo K, Zou X, Ganju RK. Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS One. 2011;6(9):e23901.
[PMC]

[43] Zlotnik A, Burkhardt AM, Homey B. Homeostatic chemokine receptors and organ-specific metastasis. Nat Rev Immunol. 2011;11(9):597–606.
[Pub Med]

[44] Caffarel MM, Sarrio D, Palacios J, Guzman M, Sanchez C. Delta9-tetrahydrocannabinol inhibits cell cycle progression in human breast cancer cells through Cdc2 regulation. Cancer Res. 2006;66(13):6615–6621.
[Pub Med]

[45]Michalski CW, Oti FE, Erkan M, Sauliunaite D, Bergmann F, Pacher P, Batkai S, Muller MW, Giese NA, Friess H, Kleeff J. Cannabinoids in pancreatic cancer: correlation with survival and pain. Int J Cancer. 2008;122(4):742–750.
[PMC]

[46]Carracedo A, Gironella M, Lorente M, Garcia S, Guzman M, Velasco G, Iovanna JL. Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res. 2006;66(13):6748–6755.
[Pub Med]

[47] Fogli S, Nieri P, Chicca A, Adinolfi B, Mariotti V, Iacopetti P, Breschi MC, Pellegrini S. Cannabinoid derivatives induce cell death in pancreatic MIA PaCa-2 cells via a receptor-independent mechanism. FEBS Lett. 2006;580(7):1733–1739.
[Pub Med]

[48] Flygare J, Gustafsson K, Kimby E, Christensson B, Sander B. Cannabinoid receptor ligands mediate growth inhibition and cell death in mantle cell lymphoma. FEBS Lett. 2005;579(30):6885–6889.
[Pub Med]

[49] Liu WM, Scott KA, Shamash J, Joel S, Powles TB. Enhancing the in vitro cytotoxic activity of Delta9-tetrahydrocannabinol in leukemic cells through a combinatorial approach. Leuk Lymphoma. 2008;49(9):1800–1809.
[Pub Med]

[50] Gustafsson K, Christensson B, Sander B, Flygare J. Cannabinoid receptor-mediated apoptosis induced by R(+)-methanandamide and Win55,212-2 is associated with ceramide accumulation and p38 activation in mantle cell lymphoma. Mol Pharmacol. 2006;70(5):1612–1620.
[Pub Med]

[51] Shi Y, Zou M, Baitei EY, Alzahrani AS, Parhar RS, Al-Makhalafi Z, Al-Mohanna FA. Cannabinoid 2 receptor induction by IL-12 and its potential as a therapeutic target for the treatment of anaplastic thyroid carcinoma. Cancer Gene Ther. 2008;15(2):101–107.
[Pub Med]

[52] Cozzolino R, Cali G, Bifulco M, Laccetti P. A metabolically stable analogue of anandamide, Met-F-AEA, inhibits human thyroid carcinoma cell lines by activation of apoptosis. Invest New Drugs. 2010;28(2):115–123.
[PubMed]

[53] Blazquez C, Carracedo A, Barrado L, Real PJ, Fernandez-Luna JL, Velasco G, Malum bres M, Guzman M. Cannabinoid receptors as novel targets for the treatment of melanoma. Faseb J. 2006;20(14):2633–2635.
[Pub Med]

[54] Differential role of cannabinoids in the pathogenesis of skin cancer Nicole Glodde, Mira Jakobs, Tobias Bald, Thomas Tüting, Evelyn Gaffal, Laboratory of Experimental Dermatology, Dept. of Dermatology and Allergy, University of Bonn, 53105 Bonn, Germany Life Sciences Volume 138, 1 October 2015, Pages 35-40
[Science Direct]

[55] Arachidonyl ethanolamide induces apoptosis of uterine cervix cancer cells via aberrantly expressed vanilloid receptor-1 Gynecologic Oncology Volume 93, Issue 1, April 2004, Pages 182-188 Emmanuel Contassot, Mirna Tenan, Valérie Schnüriger, Marie-Françoise Pelte, Pierre-Yves Dietrich
[Science Direct]

[56] Melck D, De Petrocellis L, Orlando P, Bisogno T, Laezza C, Bifulco M, Di Marzo V. Suppression of nerve growth factor Trk receptors and prolactin receptors by endocannabinoids leads to inhibition of human breast and prostate cancer cell proliferation. Endocrinology. 2000;141(1):118–126.
[Pub Med]

[57] Nithipatikom K, Endsley MP, Isbell MA, Falck JR, Iwamoto Y, Hillard CJ, Campbell WB. 2-arachidonoylglycerol: a novel inhibitor of androgen-independent prostate cancer cell invasion. Cancer Res. 2004;64(24):8826–8830.
[Pub Med]

[58] Sarfaraz S, Afaq F, Adhami VM, Mukhtar H. Cannabinoid receptor as a novel target for the treatment of prostate cancer. Cancer Res. 2005;65(5):1635–1641.
[Pub Med]

[59] Sreevalsan S, Joseph S, Jutooru I, Chadalapaka G, Safe SH. Induction of apoptosis by cannabinoids in prostate and colon cancer cells is phosphatase dependent. Anticancer Res. 31(11):3799–3807.
[PMC]

[60] Cannabinoid Receptor Activation Induces Apoptosis through Tumor Necrosis Factor a–Mediated Ceramide De novo Synthesis in Colon Cancer Cells DOI: 10.1158/1078-0432.CCR-08-0799 Published December 2008 Fabio Cianchi, Laura Papucci, Nicola Schiavone, Matteo Lulli, Lucia Magnelli, Maria Cristina Vinci, Luca Messerini, Clementina Manera, Elisa Ronconi, Paola Romagnani, Martino Donnini, Giuliano Perigli, Giacomo Trallori, Elisabetta Tanganelli, Sergio Capaccioli and Emanuela Masini
[Clinical Cancer Research]

[61] The endogenous cannabinoid, anandamide, induces COX-2-dependent cell death in apoptosis-resistant colon cancer cells  July 1, 2010  
[International Journal of Oncology]

[62] Lozano-Ondoua AN, Wright C, Vardanyan A, King T, Largent-Milnes TM, Nelson M, Jimenez-Andrade JM, Mantyh PW, Vanderah TW. A cannabinoid 2 receptor agonist attenuates bone cancer-induced pain and bone loss. Life Sci. 2010;86(17-18):646–653.
[PMC]

[63] Ofek O, Karsak M, Leclerc N, Fogel M, Frenkel B, Wright K, Tam J, Attar-Namdar M, Kram V, Shohami E, Mechoulam R, Zimmer A, Bab I. Peripheral cannabinoid receptor, CB2, regulates bone mass. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(3):696–701.
[PMC]

[64] Melissa E. Badowski A review of oral cannabinoids and medical marijuana for the treatment of chemotherapy-induced nausea and vomiting: a focus on pharmacokinetic variability and pharmacodynamics Cancer Chemotherapy and Pharmacology volume 80, pages 441–449(2017)
[springer]

[65] England TJ, Hind WH, Rasid NA, O'Sullivan SE. Cannabinoids in experimental stroke: a systematic review and meta-analysis. J Cereb Blood Flow Metab 2015;35:348-358.
[Pub Med]

[66] Leker RR, Gai N, Mechoulam R, Ovadia H. Drug-induced hypothermia reduces ischemic damage: effects of the cannabinoid HU-210. Stroke 2003;34:2000-2006.
[Pub Med]

[67] Hayakawa K, Mishima K, Irie K, et al. Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology 2008;55:1280-1286.
[Pub Med]

[68] Nagayama T, Sinor AD, Simon RP, et al. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 1999;19:2987-2995.
[Pub Med]

[69] Fernández-Ruiz, J., Moro, M.A. & Martínez-Orgado, J. Cannabinoids in Neurodegenerative Disorders and Stroke/Brain Trauma: From Preclinical Models to Clinical Applications. Neurotherapeutics 12, 793–806 (2015).
[Springer]

[70] Ramírez BG, Blázquez C, Gómez del Pulgar T, Guzmán M, de Ceballos ML. Prevention of Alzheimer's disease pathology by cannabinoids: neuroprotection mediated by blockade of microglial activation. J Neurosci 2005;25:1904-1913.Return to ref 87 in article
[PubMed]

[71] Aso E, Juvés S, Maldonado R, Ferrer I. CB2 cannabinoid receptor agonist ameliorates Alzheimer-like phenotype in AßPP/PS1 mice. J Alzheimer Dis 2013;35:847-858.
[IOS]

[72] Westlake TM, Howlett AC, Bonner TI, Matsuda LA, Herkenham M. Cannabinoid receptor binding and messenger RNA expression in human brain: an in vitro receptor autoradiography and in situ hybridization histochemistry study of normal aged and Alzheimer's brains. Neuroscience 1994;63:637-652.
[Pub Med]

[73] Zuardi AW, Crippa JA, Hallak JE, Pinto JP, Chagas MH, Rodrigues GG, et al.Cannabidiol for the treatment of psychosis in Parkinsons disease J Psychopharmacol. (2009) 23: 979–83. doi: 10.1177 / 0269881108096519
[CrossRef]

[74] Valvassori SS, Bavaresco DV, Scaini G, Varela RB, Streck EL, Chagas MH, et al. Acute and chronic administration of cannabidiol increases mitochondrial complex and creatine kinase activity in the rat brain. Rev Bras Psiquiatr. (2013) 35:380–6. doi: 10.1590/1516-4446-2012-0886
[CrossRef]

[75] Carter GT, Abood ME, Aggarwal SK, Dr. Weiss. Cannabis and amyotrophic lateral sclerosis: hypothetical and practical applications, and a call for clinical trialsAm J Hosp Palliat Care 2010; 27: 347 & ndash; 356.Return to ref 152 in article
[Pub Med]

[76] Rossi S, Bernardi G, Centonze D. The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Exp Neurol 2010;224:92-102.
[Pub Med]

[77] Yiangou Y, Facer P, Durrenberger P, et al. COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord. BMC Neurol 2006;6:12.
[Pub Med]

[78] Croxford JL, Miller SD. Towards cannabis and cannabinoid treatment of multiple sclerosis. Drugs Today (Barc). 2004;40(8):663-676. doi:10.1358/dot.2004.40.8.850469
[Pub Med]

[79] Resstel LB, Tavares RF, Lisboa SF, Joca SR, Corrêa FM, Guimarães FS. 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioral and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol. (2009) 156:181–8. doi: 10.1111/j.1476-5381.2008.00046.x
[CrossRef]

[80] Granjeiro EM, Gomes FV, Guimarães FS, Corrêa FM, Resstel LB. Effects of intracisternal administration of cannabidiol on the cardiovascular and behavioral responses to acute restraint stress. Pharmacol Biochem Behav. (2011) 99:743–8. doi: 10.1016/j.pbb.2011.06.027
[Science Direct]

[81] Campos AC, Ferreira FR, Guimarães FS. Cannabidiol blocks long-lasting behavioral consequences of predator threat stress: possible involvement of 5HT1A receptors. J Psychiatr Res. (2012) 46:1501–10. doi: 10.1016/j.jpsychires.2012.08.012
[CrossRef]

[82] Zanelati TV, Biojone C, Moreira FA, Guimarães FS, Joca SR. Antidepressant-like effects of cannabidiol in mice: possible involvement of 5-HT1A receptors. Br J Pharmacol. (2010) 159:122–8. doi: 10.1111/j.1476-5381.2009.00521.x
[CrossRef]

[83] Sartim AG, Guimarães FS, Joca SR. Antidepressant-like effect of cannabidiol injection into the ventral medial prefrontal cortex-Possible involvement of 5-HT1A and CB1 receptors. Behav Brain Res. (2016) 303:218–27. doi: 10.1016/j.bbr.2016.01.033
[CrossRef]

[84] Shoval G, Shbiro L, Hershkovitz L, Hazut N, Zalsman G, Mechoulam R, et al. Prohedonic effect of cannabidiol in a rat model of depression. Neuropsychobiology (2016) 73:123–9. doi: 10.1159/000443890
[CrossRef]

[85] Campos AC, Ortega Z, Palazuelos J, Fogaça MV, Aguiar DC, Díaz-Alonso J, et al. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol. (2013) 16:1407–19. doi: 10.1017/S1461145712001502
[CrossRef]

[86] Zuardi AW, Rodrigues JA, Cunha JM. Effects of cannabidiol in animal models predictive of antipsychotic activity. Psychopharmacology (1991) 104:260–4. doi: 10.1007/BF02244189
[CrossRef]

[87] Leweke FM, Piomelli D, Pahlisch F, Muhl D, Gerth CW, Hoyer C. Cannabidiol enhances anandamide signaling and alleviates psychotic symptoms of schizophrenia. Transl Psychiatry (2012) 2:e94. doi: 10.1038/tp.2012.15
[CrossRef]

[88] Hallak JE, Dursun SM, Bosi DC, de Macedo LR, Machado-de-Sousa JP, Abrão J, et al. The interplay of cannabinoid and NMDA glutamate receptor systems in humans: preliminary evidence of interactive effects of cannabidiol and ketamine in healthy human subjects. Prog Neuropsychopharmacol Biol Psychiatry (2011) 35:198–202. doi: 10.1016/j.pnpbp.2010.11.002
[CrossRef]

[89] Campos, Alline C. and Fogaça, Manoela V. and Scarante, Franciele F. and Joca, Sâmia R. L. and Sales, Amanda J. and Gomes, Felipe V. and Sonego, Andreza B. and Rodrigues, Naielly S. and Galve-Roperh, Ismael and Guimarães, Francisco S. Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders “Frontiers in Pharmacology” DOI: 10.3389/fphar.2017.00269
[CrossRef]

[90] Fuchs, E. und Flugge, G. (2014). Adult Neuroplasticity: More Than 40 Years of Research
[CrossRef]

[91] Wolf S. A., et al.2010Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun. Signal. 810.1186/1478-811X-8-12 (doi:10.1186/1478-811X-8-12).
[Pub Med]

[92] Wolf SA, Bick-Sander A, Fabel K, et al. Cannabinoid receptor CB1 mediates baseline and activity-induced survival of new neurons in adult hippocampal neurogenesis. Cell Commun Signal. 2010;8:12. Published 2010 Jun 17. doi:10.1186/1478-811X-8-12
[Pub Med]

[93] Jia J, Le W. Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Neurosci Bull. (2015) 31:427–34. doi: 10.1007/s12264-015-1548-2
[CrossRef]

[94] Campos Alline C., Fogaça Manoela V., Scarante Franciele F., Joca Sâmia R. L., Sales Amanda J., Gomes Felipe V., Sonego Andreza B., Rodrigues Naielly S., Galve-Roperh Ismael, Guimarães Francisco S.

Plastic and Neuroprotective Mechanisms Involved in the Therapeutic Effects of Cannabidiol in Psychiatric Disorders Frontiers in Pharmacology  VOLUME=8
[CrossRef]

[95] Trembly, B., and Sherman, M. (1990). “Double-blind clinical study of cannabidiol as a secondary anticonvulsivant,” in Proceedings of the Marijuana 90 International Conference on Cannabis and Cannabinoids, Kolympari, Crete, July 1990 (Cologne: International Association for Cannabinoid Medicines).
[karger]

[96] Do Val-da Silva Raquel A., Peixoto-Santos Jose E., Kandratavicius Ludmyla, De Ross Jana B., Esteves Ingrid, De Martinis Bruno S., Alves Marcela N. R., Scandiuzzi Renata C., Hallak Jaime E. C., Zuardi Antonio W., Crippa Jose A., Leite Joao P.  Protective Effects of Cannabidiol against Seizures and Neuronal Death in a Rat Model of Mesial Temporal Lobe Epilepsy  Frontiers in Pharmacology
[CrossRef]

[97] Devinsky O, Marsh E, Friedman D, Thiele E, Laux L, Sullivan J, et al. Cannabidiol in patients with treatment-resistant epilepsy: an open-label interventional trial. Lancet Neurol. (2016) 15:270–8. doi: 10.1016/S1474-4422(15)00379-8
[CrossRef]

[98] Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, et al. Trial of cannabidiol for drug-resistant seizures in the dravet syndrome. N Engl J Med. (2017) 376:2011–20. doi: 10.1056/NEJMoa1611618
[CrossRef]

[99] Devinsky O, Patel AD, Cross JH, Villanueva V, Wirrell EC, Privitera M, et al. Effect of cannabidiol on drop seizures in the lennox-gastaut syndrome. N Engl J Med. (2018) 378:1888–97. doi: 10.1056/NEJMoa1714631
[CrossRef]

[100] Cunha, J. M., Carlini, E. A., Pereira, A. E., Ramos, O. L., Pimentel, C., Gagliardi, R., et al. (1980). Chronic administration of cannabidiol to healthy volunteers and epileptic patients. Pharmacology 21, 175–185. doi: 10.1159/000137430
[CrossRef]

[101] Brenda E.PorterCatherineJacobson Report of a parent survey of cannabidiol-enriched cannabis use in pediatric treatment-resistant epilepsy Epilepsy & Behavior
[CrossRef]

[102] CBD-enriched medical cannabis for intractable pediatric epilepsy The current Israeli experience Michal Tzadok,Shimrit Uliel-Siboni,Ilan Linder,Uri Kramer,Orna Epstein,Shay Menascu,Andrea Nissenkorn,Omer Bar Yosef,Eli Hyman,Dorit Granot,Michael Dor,Tali Lerman Sagie,Bruria Ben-Zeev Seizure February 2016
[CrossRef]

[103] Izquierdo, I., Orsingher, O.A. & Berardi, A.C. Effect of cannabidiol and of other Cannabis sativa compounds on hippocampal seizure discharges. Psychopharmacologia 28, 95–102 (1973).
[CrossRef]

[104] Cannabidiol, a Nonpsychotropic Component of Cannabis, Inhibits Cue-Induced Heroin Seeking and Normalizes Discrete Mesolimbic Neuronal Disturbances
Yanhua Ren, John Whittard, Alejandro Higuera-Matas, Claudia V. Morris and Yasmin L. Hurd Journal of Neuroscience 25 November 2009, 29
[CrossRef]

[105] De Vries, T.J., Homberg, J.R., Binnekade, R. et al. Cannabinoid modulation of the reinforcing and motivational properties of heroin and heroin-associated cues in rats. Psychopharmacology 168, 164–169 (2003).
[CrossRef]

[106] J L Scavone  , R C Sterling, E J Van Bockstaele Neuroscience. 2013 Cannabinoid and opioid interactions: Implications for opiate dependence and withdrawal
[PMC]

[107] Cannabidiol, a Cannabis sativa constituent, inhibits cocaine-induced seizures in mice: Possible role of the mTOR pathway and reduction in glutamate release Pedro H. Gobira,Luciano R. Vilela,Bruno D.C. Gonçalves,Rebeca P.M. Santos,Antonio C. de Oliveira,Luciene B. Vieira,Daniele C. Aguiar,José A. Crippa,Fabricio A. Moreira NeuroToxicology 15 August 2015.
[CrossRef]

[108] Hurd YL, Spriggs S, Alishayev J, et al. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals With Heroin Use Disorder:
[Pub Med]

[109] Cannabinoid CB 1 receptor knockout mice fail to self-administer morphine but not other drugs of abuse Gregorio Cossu; Liana Fattore; Walter Fratta; Catherine Ledent; Marc Parmentier; Assunta Imperato; Georg A. Böhme Behav Brain Res. 2001
[Pub Med]

[110] Navarro M, Chowen J, Rocío A Carrera M, et al. CB1 cannabinoid receptor antagonist-induced opiate withdrawal in morphine-dependent rats.
[Pub Med]

[111] Morgan CJ, Das RK, Joye A, Curran HV, Kamboj SK. Cannabidiol reduces cigarette consumption in tobacco smokers: preliminary findings. Addict Behav. 2013 Sep;38(9):2433-6. doi: 10.1016/j.addbeh.2013.03.011. Epub 2013 Apr 1. PMID: 23685330.
[ncbi]

Honig

Kristallisierter Honig ist als Aufnahmeverstärker bestens geeignet.

Honig soll so lange wie möglich in der Mundhöhle, vorzugsweise unter der Zunge, behalten werden bis sich die Kristalle sanft auflösen. Die im Honig aufgelösten Stoffe gelangen über die Schleimhaut direkt in den Blutkreislauf.

Honig ist das beste Konservierungsmittel

Vorchristliche Kulturen verwendeten Honig um wertvolle Lebensmittel für die Ewigkeit haltbar zu machen. Sie konservierten frisches Obst, Gemüse, Fisch, Fleisch und wertvolles Saatgut jahrelang in rohem Honig. Echter richtig gelagerter Honig wird nie schlecht.[1] Über 3000 Jahre alter Honig aus ägyptischen Gräbern ist immer noch genießbar. Die Römer genossen bei ihren üppigen Feiern Früchte und andere Lebensmittel aus fernen Gegenden, die in Honig eingelegt transportiert wurden und dadurch frisch blieben[1]

Honig in traditionellen Heilpraktiken

Menschen nutzen die heilenden Eigenschaften von Honig seit der Steinzeit.[2]
In allen traditionellen Heilpraktiken ist die herausragende Wirkung von Honig auf unseren Körper bestens bekannt. Wegen ѕеіnеr bаktеrіzіdеn und bakteriostatischen[3]  Еіgеnѕсhаftеn wurde er äußerlich und innerlich angewendet, um eine Vielzahl von Krankheiten, Verletzungen und Beschwerden zu behandeln.

Indien 
Ayurveda empfielt Honig zur Behandlung bei schwacher Verdauung, reizendem Husten, Asthma, bronchiale Tuberkulose, Schlaflosigkeit, Herzschmerzen, Herzklopfen, Ungleichgewicht der Lunge, Hepatitis, Wurmbefall, Verstopfung, Anämie Augenkrankheiten (wie Grauer Star) und um Zähne und Zahnfleisch gesund zu halten, Behandlung von Erbrechen, Durchfall, rheumatoide Arthritis, Fettleibigkeit, Diabetes mellitus und zur Konservierung von Fleisch und Früchten.[4]

Ägypten
Honig war das beliebtesten ägyptische Heilmittel. Es wurde 500 Mal in 900 Rezepturen erwähnt.
[5] Sie verwendeten auch Honig, um die Toten zu balsamieren.

Griechenland
Honig wird in Griechenland als
Oenomel traditionell als Volksheilmittel gegen Gicht und nervöse Störungen eingesetzt. Hippokrates verschrieb als Oxymel (Essig und Honig) gegen Schmerzen, Honig und Heilpflanzen gegen akutes Fieber[6] er  verwendete Honig gegen Kahlheit, Empfängnisverhütung, Wundheilung, Abführmittel, Husten und Halsschmerzen, Augenkrankheiten, topische Antisepsis, Vorbeugung und Behandlung von Narben[7]

Islamische Medizin
Prophet Mohammad empfahl Honig zur Behandlung von Durchfall [8] Avicenna hatte Honig als eines der besten Mittel zur Behandlung von Tuberkulose [9] empfohlen.

Traditionelle Chinesische Medizin
In der Traditionellen Chinesischen Medizin (TCM) wurde Honig als Zusatzstoff bei den pflanzlichen Arzneimitteln verwendet, um deren immunstimulatorische Aktivitäten zu verbessern.
[10]

Durch die  Antibiotika ist die Wirkung von Honig in Vergessenheit geraten. Erst mit dem Auftreten multiresistenter Mikroorganismen, wird  die Medizin gezwungen die antibiotische Wirkung des Honigs zu achten.

Forschungen:

Honig bei Atemwegsinfektionen
Honig hat eine gute antibakterielle, antimykotische und antivirale Eigenschaft und ist bei der Besserung von Symptomen einer Infektionen der oberen Atemwege, verschreibungspflichtigen Medikamenten und Antibiotika überlegen[11]. Es sind noch keine Honig resistenten Phänotypen aufgetreten.[12] [13] Honig führt nicht zur Entwicklung antibiotikaresistenter Bakterien und kann kontinuierlich angewendet werden[14]

Erkrankungen des Magen-Darm-Trakts
Honig ist zur Behandlung von Kolitis genauso wirksam wie Prednisolon[15]. Orale Verabreichung bewirkt einen Schutz vor Magen-Darm-Infektionen wie Gastritis, Duodenitis und durch Bakterien und Rotaviren verursachte Magengeschwüren.[16] [17] [18] [19] Blockiert die Ablagerung pathogener Mikroorganismen an das Darmepithel und schützt vorn bakterieller Infektion des Magen-Darm-Traktes [20]. Honig löst schnell Durchfall und Gastroenteritis[21] [22]. Er kann zur Heilung von Magengeschwüren und Ulkus [23] sowie Erbrechen, Durchfall, rheumatoide Arthritis und Fettleibigkeit [24] eingesetzt werden.

Honig und Diabetes
Honig verringert die Blutlipide, den Homocysteinspiegel und C-reaktiven Proteinspiegel [25]. Honig stimuliert die Insulinsekretion, senkt den Blutzuckerspiegel, erhöht die Hämoglobinkonzentration und verbessert das Lipidprofil[26] [27]

Honig und Herz-Kreislauf-Erkrankungen
Honig senkt die kardiovaskuläre Risikofaktoren wie Entstehung von freien Radikalen  und die Hyperlipidämie
[28] [29] .Honig senkt den venösen Blutdruck, was die Vorspannung des Herzens und Verstopfung im Venensystem verringert [30]. Fünfwöchiger Verzehr von natürlichem Honig hat eine starke antiarrhythmische und infarkthemmende Wirkung [31].


[1] Dr. S. Mladenov, The Preservative Effect of Honey, Pchelarstvo Magazine, issue 12, 1967
[
Honeypedia]

[2] Bansal V, Medhi B, Pandhi P. Honey a remedy rediscovered and its therapeutic utility. Kathmandu Univ Med J (KUMJ). 2005 Jul-Sep;3(3):305-9. PMID: 18650599.
[PubMed]

[3] bakterizid = keimtötend, bakteriostatisch = das Wachstum oder die Vermehrung von Bakterien hemmend

[4] Ediriweera E., Premarathna N. Medicinal and cosmetic uses of bee’s honey–A review. Ayu. 2012;33:178.
[
PMC free article]

[5]  Al-Jabri AA. Honey, milk and antibiotics. Afr J Biotechnol. 2005;4:1580–1587.
[
AJB]

[6] Honey--a remedy rediscovered. Zumla A, Lulat A J R Soc Med. 1989 Jul; 82(7):384-5.
[
PubMed]

[7]  Bansal V, Medhi B, Pandhi P. Honey a remedy rediscovered and its therapeutic utility. Kathmandu Univ Med J (KUMJ). 2005 Jul-Sep;3(3):305-9. PMID: 18650599.
[PubMed]

[8] Molan PC. Why honey is effective as a medicine. 1. Its use in modern medicine. Bee World. 1999;80:80–92.
[
TaylorFrancis]

[9] The antimycobacterial effect of honey: an in vitro study. Asadi-Pooya AA, Pnjehshahin MR, Beheshti S Riv Biol. 2003 Sep-Dec; 96(3):491-5.
[
PubMed]

[10] The immunostimulatory effects and chemical characteristics of heated honey. Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-Dori, Mizuho-ku, Nagoya 467-8603, Japan
[
PubMed]

[11] Abuelgasim H, Albury C, Lee J. Effectiveness of honey for symptomatic relief in upper respiratory tract infections: a systematic review and meta-analysis. BMJ Evid Based Med. 2020 Aug 18:bmjebm-2020-111336. doi: 10.1136/bmjebm-2020-111336. Epub ahead of print. PMID: 32817011.
[PubMed]

[12] Maddocks SE, Jenkins RE. Honey: a sweet solution to the growing problem of antimicrobial resistance? Future Microbiol. 2013 Nov;8(11):1419-29. doi: 10.2217/fmb.13.105. PMID: 24199801.
[FutureMedicine]

[13] Bacteria can't resist honey. Dixon B Lancet Infect Dis. 2003 Feb; 3(2):116.
[
PubMed

[14] A different and safe method of split thickness skin graft fixation: medical honey application. Emsen IM Burns. 2007 Sep; 33(6):782-7.
[
PubMed]

[15] Bilsel Y, Bugra D, Yamaner S, Bulut T, Cevikbas U, Turkoglu U. Could honey have a place in colitis therapy? Effects of honey, prednisolone and disulfiram on inflammation, nitric oxide, and free radical formation. Dig Surg. 2002;19:306–311.
[
PubMed]

[16] Tallet S, Mackkenzie C, Middleton P, Kerzner B, Hamilton R. Clinical, laboratory and epidemiologic features of viral gastroenteritis in infants and children. Paediatrics. 1977;60:217–222.
[
PubMed]

[17] Haffejee I, Moosa AE. Honey in the treatment of infantile gastroenteritis. Br Med J. 1985;290:1866–1867.
[
PMC free article]

[18] Somal N, Coley K, Molan P, Hancock B. Susceptibility of Helicobacter pylori to the antibacterial activity of Manuka honey. J Royal Soc Med. 1994;87:9–12.
[
PMC free article]

[19] Topham J. Why do some cavity wounds treated with honey or sugar paste heal without scarring? J Wound Care . 2002;11:53–55.
[
PubMed]

[20] Alnaqdy A, Al-Jabri A, Al Mahrooqi Z, Nzeako B, Nsanze H. Inhibition effect of honey on the adherence of Salmonella to intestinal epithelial cells in vitro. Int J Food Microbiol. 2005;103:347–351.
[
PubMed]

[21] Honey-a remedy rediscovered and its therapeutic utility. Bansal V, Medhi B, Pandhi P Kathmandu Univ Med J (KUMJ). 2005 Jul-Sep; 3(3):305-9.
[
PubMed]

[22] The antibacterial effect of honey on diarrhoea causing bacterial agents isolated in Lagos, Nigeria. Obi CL, Ugoji EO, Edun SA, Lawal SF, Anyiwo CE Afr J Med Med Sci. 1994 Sep; 23(3):257-60.
[
PubMed]

[23] Ali ATM. Natural honey accelerates healing of indomethacin-induced antral ulcers in rats. Saudi Med J . 1995;16:161–166.
[
WHO] 

[24] Ediriweera ER, Premarathna NY. Medicinal and cosmetic uses of Bee's Honey - A review. Ayu. 2012;33(2):178-182. doi:10.4103/0974-8520.105233
[PMC] 

[25] Natural honey lowers plasma glucose, C-reactive protein, homocysteine, and blood lipids in healthy, diabetic, and hyperlipidemic subjects: comparison with dextrose and sucrose. Al-Waili NS J Med Food. 2004 Spring; 7(1):100-7.
[
PubMed]

[26] Effect of honey on antibody production against thymus-dependent and thymus-independent antigens in primary and secondary immune responses. Al-Waili NS, Haq A J Med Food. 2004 Winter; 7(4):491-4.
[
PubMed]

[27]  Bahrami M, Ataie-Jafari A, Hosseini S, Forouzanfar M, Rahmani M, Pajouhi M. Effects of natural honey consumption in diabetic patients: an 8-week randomized clinical trial. Int J Food Sci Nutr . 2008;2:1–9.
[
PubMed]

[28]  Schramm DD, Karim M, Schrader HR, Holt RR, Cardetti M, Keen CL. Honey with high levels of antioxidants can provide protection to healthy human subjects. J Agric Food Chem. 2003;51:1732–1735.
[
PubMed]

[29] Yaghoobi N, Al-Waili N, Ghayour-Mobarhan M, Parizadeh SMR, Abasalti Z, Yaghoobi Z, et al. Natural honey and cardiovascular risk factors; effects on blood glucose, cholesterol, triacylglycerole, CRP and body weight compared with sucrose. Sci World J . 2008;8:463–469.
[
PMC free article]

[30] Rakha MK, Nabil ZI, Hussein AA. Cardioactive and vasoactive effects of natural wild honey against cardiac malperformance induced by hyperadrenergic activity. J Med Food. 2008;11:91–98.
[
PubMed]

[31]  Najafi M, Shaseb E, Ghaffary S, Fakhrju A, Eteraf-Oskouei T. Effects of chronic oral administration of natural honey on ischemia/reperfusion-induced arrhythmias in isolated rat heart. Iran J Basic Med Sci. 2011;14:75–81.
[
eprints]

Ginseng (Panax ginseng)

Pflanze der chinesischen Kaiser

Ginseng gilt als eine der wichtigsten Heilpflanzen der traditionellen chinesischen und koreanischen Medizin. Er wird erstmals in einem Buch aus dem 1. Jahrhundert v. Chr. erwähnt, in dem das mündlich überlieferte Wissen von Kaiser Shen Nung (ca. 2700 v. Chr.) aufgezeichnet wurde. Da die Wurzel die Form eines Menschen hat, wurde sie als Allheilmittel und Symbol für ein langes Leben gesehen. Sie war wertvoller als Gold und durfte nur vom Kaiser eingenommen werden. [1] 
In  China Japan und Korea wurde Ginseng bei Impotenz
[2] [3],  Anorexie, Schlaflosigkeit, Diabetes, Hypodynamie, Herzklopfen, Blutungen und Atemnot verwendet.[4] [5] In Donguibogam,[6] sind 653 Rezepte, mit Ginseng als Zutat.[7]

Stärkungsmittel bei Erschöpfung und Schwäche

Die Ginsengwurzel ist von der EU als Traditionelles Pflanzliches Arzneimittel anerkannt und wird schon seit Jahrhunderten als Stärkungsmittel bei  Rekonvaleszenz,  Müdigkeit, Erschöpfung und Schwäche eingesetzt.[8] 

Studien belegen die breite Wirkung von Ginseng auf Körper und Geist bei:

Schlaganfall - Ginseng ist in der Lage, anatomische und funktionelle Schädigungen infolge eines Schlaganfalls zu verringern, verhindert die Unterbrechung der Blut-Hirn-Schranke und damit die Bildung von Ödemen im Gehirn. [9] 

Herzinfarkt - Ginseng reduziert die Infarktgröße, unterdrückt das Absterben des Herzmuskels, verbessert die Herzleistung[10] [11] ,Aortenfluss und Koronarfluss [12]. Herz-Kreislauf-System - Ginseng reguliert den Blutdruck [13], die Funktion der Blutgefäße[14] und schützt die Blutgefäße vor Schädigungen[15].  Studien zeigten, dass sich Ginseng positiv auf Angstzustände [16] geistige Erschöpfung, [17] Potenzstörungen, [18]  das Immunsystem [19] [20] [21] Krebs,[22] [23] die Gedächtnisleistung, [24] die Aufmerksamkeitsspanne, den Orientierungssinn, die Sprache, die  kognitiven [25]  und motorischen Fähigkeiten bei Menschen mit Alzheimer-Demenz auswirkt. Leute, die an Stimmungsschwankungen oder Depressionen litten, konnten ebenfalls von Ginseng profitieren. [26]

Dank Ginseng besser mit Stress umgehen

Ginseng zählt zu den sog. Adaptogenen, das sind Pflanzen, die den Menschen dabei unterstützen, mit Stress [27] besser umzugehen und das natürliche Gleichgewicht wiederherzustellen. Ginseng wirkt entzündungshemmend und schmerzlindernd [28] [29] [30]

Die Anwendungsdauer sollte wegen fehlender Langzeitstudien nicht länger als 3 Monate betragen. Wegen seiner stark anregenden Wirkung ist es empfehlenswert, CBD FULL Ginseng mit Honig spätestens zu Mittag einzunehmen.

Ginseng wird selten mit unerwünschten Ereignissen assoziiert. Dokumentierte Arzneimittelwechselwirkungen sind mild und vorübergehend. Mögliche Wechselwirkungen zwischen P. ginseng Warfarin, Phenelzin und Alkohol wurden berichtet. [31]


[1] Nair R, Sellaturay S, Sriprasad S. The history of ginseng in the management of erectile dysfunction in ancient China (3500-2600 BCE). Indian J Urol. 2012;28(1):15-20. doi:10.4103/0970-1591.94946
PMC

[2] Jang DJ, Lee MS, Shin BC, Lee YC, Ernst E. Red ginseng for treating erectile dysfunction: a systematic review. Br J Clin Pharmacol. 2008 Oct;66(4):444-50. doi: 10.1111/j.1365-2125.2008.03236.x. Epub 2008 Jun 9. PMID: 18754850; PMCID: PMC2561113.
pubmed

[3] Nair R, Sellaturay S, Sriprasad S. The history of ginseng in the management of erectile dysfunction in ancient China (3500-2600 BCE). Indian J Urol. 2012;28(1):15-20. doi:10.4103/0970-1591.94946
PMC

[4] Kim, J.K., Tabassum, N., Uddin, M.R. et al. Ginseng: a miracle sources of herbal and pharmacological uses. Orient Pharm Exp Med 16, 243–250 (2016).
springer

[5] Xiang YZ, Shang HC, Gao XM, Zhang BL. A comparison of the ancient use of ginseng in traditional Chinese medicine with modern pharmacological experiments and clinical trials. Phytother Res. 2008 Jul;22(7):851-8. doi: 10.1002/ptr.2384. PMID: 18567057.
pubmed

[6] Das Donguibogam (koreanisch: 동의보감, chinesisch 東醫寶鑑) ist ein 23-bändiges Werk aus dem Jahre 1613 über den damaligen Stand der koreanischen Medizin während der Zeit der Joseon-Dynastie (조선왕조) (1392–1910)
Wikipedia

[7] Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal prescriptions. J Ginseng Res. 2012;36(3):225-241. doi:10.5142/jgr.2012.36.3.225
PMC

[8] Traditionelles Pflanzliches Arzneimittel
arzneipflanzenlexikon

[9] Rastogi, V., Santiago-Moreno, J., & Doré, S. (2015). Ginseng: a promising neuroprotective strategy in stroke. Frontiers in Cellular Neuroscience, 8, 457.
[
frontiers]

[10] Luo P., Dong G., Liu L., Zhou H. The long-term consumption of ginseng extract reduces the susceptibility of intermediate-aged hearts to acute ischemia reperfusion injury. PLoS One. 2015;10:e0144733.
[
PMC free article]

[11] Wu Y., Lu X., Xiang F.L., Lui E.M., Feng Q. North American ginseng protects the heart from ischemia and reperfusion injury via upregulation of endothelial nitric oxide synthase. Pharmacol. Res. 2011;64:195–202.
[
PubMed]

[12] Lim K.H., Kang C.W., Choi J.Y., Kim J.H. Korean red ginseng induced cardioprotection against myocardial ischemia in Guinea pig. Korean J. Physiol. Pharmacol. 2013;17:283–289.
[
PMC free article]

[13] Kim Y.M., Namkoong S., Yun Y.G., Hong H.D., Lee Y.C., Ha K.S., Lee H., Kwon H.J., Kwon Y.G., Kim Y.M. Water extract of Korean red ginseng stimulates angiogenesis by activating the PI3K/Akt-dependent ERK1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol. Pharm. Bull. 2007;30:1674–1679.
[
PubMed]

[14] Yu J., Eto M., Akishita M., Kaneko A., Ouchi Y., Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: a possible involvement of androgen receptor. Biochem. Biophys. Res. Commun. 2007;353:764–769.
[
PubMed]

[15] Zhou W., Chai H., Lin P.H., Lumsden A.B., Yao Q., Chen C. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J. Vasc. Surg. 2005;41:861–868.
[
PubMed]

[16] Zhao Z., Kim Y.W., Wu Y., Zhang J., Lee J.H., Li X., Cho I.J., Park S.M., Jung D.H., Yang C.H., Kim S.C., Zhao R. Korean Red Ginseng attenuates anxiety-like behavior during ethanol withdrawal in rats. J. Ginseng Res. 2014;38:256–263.
[
PMC free article]

[17] Reay JL, Kennedy DO, Scholey AB. Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity. J Psychopharmacol. 2005;19(4):357-365. doi:10.1177/0269881105053286
[
PubMed]

[18] Jang, D.-J., Lee, M.S., Shin, B.-C., Lee, Y.-C. and Ernst, E. (2008), Red ginseng for treating erectile dysfunction: a systematic review. British Journal of Clinical Pharmacology, 66: 444-450.
BJCP

[19] Miller S.C., Ti L., Shan J. Dietary supplementation with an extract of North American ginseng in adult and juvenile mice increases natural killer cells. Immunol. Invest. 2012;41:157–170.
[
PubMed]

[20] Wang M., Guilbert L.J., Ling L., Li J., Wu Y., Xu S., Pang P., Shan J.J. Immunomodulating activity of CVT-E002, a proprietary extract from North American ginseng (Panax quinquefolium) J. Pharm. Pharmacol. 2001;53:1515–1523.
[
PubMed]

[21] Liou C.J., Huang W.C., Tseng J. Short-term oral administration of ginseng extract induces type-1 cytokine production. Immunopharmacol. Immunotoxicol. 2006;28:227–240.
[
PubMed]

[22] Wang Y, Hao Y, Lou J, Ma H, Qiu Q. Effect of ginsenoside Rg1 and Rh1 on the anti-tumor activity of dendritic cell. Chin J Pathophysiol 2004; 20: 1759–1764
europepmc

[23] Sun Mi Kim, So Yong Lee, Jin Suk Cho, Seung Mo Son, Sang Sook Choi, Yeo Pyo Yun, Hwan Soo Yoo, Do Young Yoon, Ki-Wan Oh, Sang Bae Han, Jin Tae Hong, Combination of ginsenoside Rg3 with docetaxel enhances the susceptibility of prostate cancer cells via inhibition of NF-?B, European Journal of Pharmacology, Volume 631, Issues 1–3,
sciencedirect

[24] Shin K., Guo H., Cha Y., Ban Y.H., Seo da W., Choi Y., Kim T.S., Lee S.P., Kim J.C., Choi E.K., Yon J.M., Kim Y.B. Cereboost™, an American ginseng extract, improves cognitive function via up-regulation of choline acetyltransferase expression and neuroprotection. Regul. Toxicol. Pharmacol. 2016;78:53–58.
[
PubMed]

[25] Kennedy DO, Scholey AB, Wesnes KA. Modulation of cognition and mood following administration of single doses of Ginkgo biloba, ginseng, and a ginkgo/ginseng combination to healthy young adults. Physiol Behav. 2002;75(5):739-751.
[
PubMed]

[26] Mancuso C, Santangelo R. Panax ginseng and Panax quinquefolius: From pharmacology to toxicology. Food Chem Toxicol. 2017;107(Pt A):362-372.
[
PMC]

[27] Rasheed N., Tyagi E., Ahmad A., Siripurapu K.B., Lahiri S., Shukla R., Palit G. Involvement of monoamines and proinflammatory cytokines in mediating the anti-stress effects of Panax quinquefolium. J. Ethnopharmacol. 2008;117:257–262.
[
PubMed]

[28] Jung H.J., Choi H., Lim H.W., Shin D., Kim H., Kwon B., Lee J.E., Park E.H., Lim C.J. Enhancement of anti-inflammatory and antinociceptive actions of red ginseng extract by fermentation. J. Pharm. Pharmacol. 2012;64:756–762.
[
PubMed]

[29] Chen J., Wang Q., Wu H., Liu K., Wu Y., Chang Y., Wei W. The ginsenoside metabolite compound K exerts its anti-inflammatory activity by downregulating memory B cell in adjuvant-induced arthritis. Pharm. Biol. 2016;54:1280–1288.
[
PubMed]

[30] Lee S, Rhee DK. Effects of ginseng on stress-related depression, anxiety, and the hypothalamic-pituitary-adrenal axis. J Ginseng Res. 2017;41(4):589-594. doi:10.1016/j.jgr.2017.01.010
[
PMC]

[31] Coon JT, Ernst E. Panax ginseng: a systematic review of adverse effects and drug interactions. Drug Saf. 2002;25(5):323-44. doi: 10.2165/00002018-200225050-00003. PMID: 12020172.
pubmed